JustNote
  • Introduction
  • DesignPattern
    • 七大原则
      • 开闭原则(OCP)
      • 依赖倒置原则(DIP)
      • 单一职责原则(SRP)
      • 接口隔离原则(ISP)
      • 迪米特法则(LoD)
      • 里氏代换原则(LSP)
      • 合成复用原则(CRP)
    • 创建型模式
      • 简单工厂模式
      • 工厂方法模式
      • 抽象工厂模式
      • 建造者模式
      • 单例模式
      • 原型模式
    • 结构型模式
      • 外观模式
      • 装饰模式
      • 适配器模式
      • 享元模式
      • 组合模式
      • 桥接模式
      • 代理模式
    • 行为型模式
      • 模板方法模式
      • 迭代器模式
      • 策略模式
      • 解释器模式
      • 观察者模式
      • 备忘录模式
      • 命令模式
      • 中介者模式
      • 责任链模式
      • 访问者模式
      • 状态模式
  • Java
    • Java Core
      • JVM 如何加载类
      • JVM 垃圾回收
      • JVM G1GC
      • JVM G1GC Q&A
      • JVM 与 Hbase
      • JVM ZGC Overview
      • JVM ZGC 内存管理
      • JVM ZGC 线程
      • JVM ZGC 垃圾回收
      • JVM ZGC 日志分析
      • JVM ZGC 参数调优
    • checkstyle
  • Golang
    • 源码阅读
      • Goroutines
      • Channel
    • gRPC
      • 1、快速开始
      • 2、什么是gRPC
      • 3、gRPC概念梳理
      • 4、基于Golang的gRPC入门
      • 5、gRPC组件ProtocolBuffers介绍
      • 6、gRPC组件Http 2.0
      • 7、错误处理和Debug
      • 8、gRPC身份验证
      • 9、服务注册与发现
      • 10、gRPC与gRPC Gateway
      • 11、gRPC与分布式链路追踪
  • Scala
    • 数据结构与算法
      • 数组
      • 队列
    • 函数式编程
      • 高阶函数
      • 偏函数
    • Immutable Collection
      • List
    • Mutable Collection
      • Array
    • 常见函数操作
      • A
        • aggregate
        • andThen
        • appended
        • appendedAll
      • C
        • chain
        • collect
        • collectFirst
        • combinations
        • compose
        • concat
        • cond
        • condOpt
        • const
        • contains
        • containsSlice
        • copyToArray
        • corresponds
        • count
        • curried
      • D
        • diff
        • distinct
        • distinctBy
        • drop
        • dropRight
        • dropWhile
      • E
        • empty(PartialFunction)
        • empty(collections)
        • endsWith
        • exists
      • F
        • fill
        • filter
        • filterKeys
        • filterNot
        • find
        • findLast
        • flatMap
        • flatten
        • fold
        • foldLeft
        • foldRight
        • forall
        • foreach
        • fromFunction
      • G
        • getOrElse (Map)
        • getOrElse (Option)
        • groupBy
        • groupMap
        • groupMapReduce
        • grouped
      • H
        • head
        • headOption
      • I
        • indexOf
        • indexOfSlice
        • indexWhere
        • indices
        • init
        • inits
        • intersect
        • isDefinedAt (Map)
        • isDefinedAt (Seq)
        • isEmpty
        • isTraversableAgain
      • K
        • keys
      • L
        • last
        • lastIndexOf
        • lastIndexOfSlice
        • lastIndexWhere
        • lastOption
        • length
        • lift
      • M
        • map
        • mapConserve
        • mapValues
        • max
        • maxBy
        • maxByOption
        • maxOption
        • min
        • minBy
        • minByOption
        • minOption
        • mkString
      • N
        • nonEmpty
      • O
        • orElse
      • P
        • padTo
        • par
        • partition
        • partitionMap
        • patch
        • permutations
        • prefixLength
        • prepended
        • prependedAll
        • product
      • R
        • range
        • reduce
        • reduceLeft
        • reduceLeftOption
        • reduceOption
        • reduceRight
        • reduceRightOption
        • reverse
        • reverseIterator
        • reverseMap
        • runWith
      • S
        • sameElements
        • scan
        • scanLeft
        • scanRight
        • search
        • segmentLength
        • size
        • slice
        • sliding
        • sortBy
        • sortWith
        • sorted
        • span
        • splitAt
        • startsWith
        • sum
      • T
        • tabulate
        • tail
        • tails
        • take
        • takeRight
        • takeWhile
        • transpose
        • tupled
      • U
        • unfold
        • union
        • unlift
        • untupled
        • unzip
        • unzip3
        • updated
      • V
        • values
        • view
      • W
        • withFilter
        • withDefault
        • withDefaultValue
      • Z
        • zip
        • zipAll
        • zipWithIndex
      • map
      • flatmap
      • filter
      • reduceLeft
      • foldLeft
    • Futures
      • Method with future as return type
      • Non blocking future result
      • Chain futures using flatMap
      • Chain futures using for comprehension
      • Future Option with for comprehension
      • Future Option with map
      • Composing Futures
      • Future Sequence
      • Future Traverse
      • Future foldLeft
      • Future reduceLeft
      • Future firstCompletedOf
      • Future zip
      • Future zipWith
      • Future andThen
      • Future configure threadpool
      • Future recover
      • Future recoverWith
      • Future fallbackTo
      • Future promise
    • Akka
  • Algorithm
  • Docker
  • Kubernetes
    • 二进制安装kubernetes
      • 00.从零开始
  • Architecture
    • Infrastructure
      • Opentracing
      • Jaeger && ZipKin
      • SkyWalking
      • Consul
      • Envoy
      • Service Mesh
      • Service Mesh: Istio 详解
      • Service Mesh: 基于 Istio 的落地实践(一)
    • CAS
      • CAS Server
      • CAS Service Management
      • CAS 集成LDAP
      • CAS 集成gitlab
      • CAS SSO & SLO
      • CAS Gitbook
    • xCAT
  • Netty
  • DDD
  • Reactive Programming
    • Reactor
      • Publisher
      • Subscriber
      • Subscription
      • Processor
    • WebFlux
  • Gitlab
    • Git Hook
  • CICD
    • Jenkins
      • Kubectl
Powered by GitBook
On this page
  • definition
  • demo
  • demo1
  • demo2

Was this helpful?

  1. Scala
  2. 常见函数操作
  3. R

reduce

definition

The reduce method takes an associative binary operator function as parameter and will use it to collapse elements from the collection. Unlike the fold method, reduce does not allow you to also specify an initial value.

def reduce[A1 >: A](op: (A1, A1) ⇒ A1): A1

demo

val donutPrices: Seq[Double] = Seq(1.5, 2.0, 2.5)

// find the sum of elements using reduce function explicitly
val sum: Double = donutPrices.reduce(_ + _)

val sum1: Double = donutPrices.reduce((a, b) => a + b)

// find the cheapest donut using reduce function
val priceMin = donutPrices.reduce(_ min _)



val donuts: Seq[String] = Seq("Plain Donut", "Strawberry Donut", "Glazed Donut")

// concatenate the elements from the sequence using reduce function

val donutsConcat = donuts.reduce((left, right) => left + ", " + right)

输出的结果如下

scala> val donutsConcat = donuts.reduce((left, right) => left + ", " + right)
donutsConcat: String = Plain Donut, Strawberry Donut, Glazed Donut

demo1

// declare a value function to concatenate donut names
val concatDonutNames: (String, String) => String = (left, right) => {
 left + ", " + right
}

val donutsConcat = donuts.reduce(concatDonutNames)

demo2

// use option reduce to avoid exception if the collection is empty

scala> Seq.empty[String].reduceOption(_ + ", " + _)
res0: Option[String] = None
PreviousrangeNextreduceLeft

Last updated 5 years ago

Was this helpful?